04. Motion and Sensing
Motion and Sensing
Task Description:
In the previous lesson, you’ve learned how to interact with the Robot class. Now, you’ll be asked to instantiate a robot object, simulate motion update and sensor update similar to what you’ve learned in the first quiz.
Scroll down to the main
function and complete the following tasks:
Task Feedback:
Great work! Now run your code and verify it is functioning as expected.
Start Quiz:
//#include "src/matplotlibcpp.h"//Graph Library
#include <iostream>
#include <string>
#include <math.h>
#include <vector>
#include <stdexcept> // throw errors
#include <random> //C++ 11 Random Numbers
//namespace plt = matplotlibcpp;
using namespace std;
// Landmarks
double landmarks[8][2] = { { 20.0, 20.0 }, { 20.0, 80.0 }, { 20.0, 50.0 },
{ 50.0, 20.0 }, { 50.0, 80.0 }, { 80.0, 80.0 },
{ 80.0, 20.0 }, { 80.0, 50.0 } };
// Map size in meters
double world_size = 100.0;
// Random Generators
random_device rd;
mt19937 gen(rd());
// Global Functions
double mod(double first_term, double second_term);
double gen_real_random();
class Robot {
public:
Robot()
{
// Constructor
x = gen_real_random() * world_size; // robot's x coordinate
y = gen_real_random() * world_size; // robot's y coordinate
orient = gen_real_random() * 2.0 * M_PI; // robot's orientation
forward_noise = 0.0; //noise of the forward movement
turn_noise = 0.0; //noise of the turn
sense_noise = 0.0; //noise of the sensing
}
void set(double new_x, double new_y, double new_orient)
{
// Set robot new position and orientation
if (new_x < 0 || new_x >= world_size)
throw std::invalid_argument("X coordinate out of bound");
if (new_y < 0 || new_y >= world_size)
throw std::invalid_argument("Y coordinate out of bound");
if (new_orient < 0 || new_orient >= 2 * M_PI)
throw std::invalid_argument("Orientation must be in [0..2pi]");
x = new_x;
y = new_y;
orient = new_orient;
}
void set_noise(double new_forward_noise, double new_turn_noise, double new_sense_noise)
{
// Simulate noise, often useful in particle filters
forward_noise = new_forward_noise;
turn_noise = new_turn_noise;
sense_noise = new_sense_noise;
}
vector<double> sense()
{
// Measure the distances from the robot toward the landmarks
vector<double> z(sizeof(landmarks) / sizeof(landmarks[0]));
double dist;
for (int i = 0; i < sizeof(landmarks) / sizeof(landmarks[0]); i++) {
dist = sqrt(pow((x - landmarks[i][0]), 2) + pow((y - landmarks[i][1]), 2));
dist += gen_gauss_random(0.0, sense_noise);
z[i] = dist;
}
return z;
}
Robot move(double turn, double forward)
{
if (forward < 0)
throw std::invalid_argument("Robot cannot move backward");
// turn, and add randomness to the turning command
orient = orient + turn + gen_gauss_random(0.0, turn_noise);
orient = mod(orient, 2 * M_PI);
// move, and add randomness to the motion command
double dist = forward + gen_gauss_random(0.0, forward_noise);
x = x + (cos(orient) * dist);
y = y + (sin(orient) * dist);
// cyclic truncate
x = mod(x, world_size);
y = mod(y, world_size);
// set particle
Robot res;
res.set(x, y, orient);
res.set_noise(forward_noise, turn_noise, sense_noise);
return res;
}
string show_pose()
{
// Returns the robot current position and orientation in a string format
return "[x=" + to_string(x) + " y=" + to_string(y) + " orient=" + to_string(orient) + "]";
}
string read_sensors()
{
// Returns all the distances from the robot toward the landmarks
vector<double> z = sense();
string readings = "[";
for (int i = 0; i < z.size(); i++) {
readings += to_string(z[i]) + " ";
}
readings[readings.size() - 1] = ']';
return readings;
}
double measurement_prob(vector<double> measurement)
{
// Calculates how likely a measurement should be
double prob = 1.0;
double dist;
for (int i = 0; i < sizeof(landmarks) / sizeof(landmarks[0]); i++) {
dist = sqrt(pow((x - landmarks[i][0]), 2) + pow((y - landmarks[i][1]), 2));
prob *= gaussian(dist, sense_noise, measurement[i]);
}
return prob;
}
double x, y, orient; //robot poses
double forward_noise, turn_noise, sense_noise; //robot noises
private:
double gen_gauss_random(double mean, double variance)
{
// Gaussian random
normal_distribution<double> gauss_dist(mean, variance);
return gauss_dist(gen);
}
double gaussian(double mu, double sigma, double x)
{
// Probability of x for 1-dim Gaussian with mean mu and var. sigma
return exp(-(pow((mu - x), 2)) / (pow(sigma, 2)) / 2.0) / sqrt(2.0 * M_PI * (pow(sigma, 2)));
}
};
// Functions
double gen_real_random()
{
// Generate real random between 0 and 1
uniform_real_distribution<double> real_dist(0.0, 1.0); //Real
return real_dist(gen);
}
double mod(double first_term, double second_term)
{
// Compute the modulus
return first_term - (second_term)*floor(first_term / (second_term));
}
double evaluation(Robot r, Robot p[], int n)
{
//Calculate the mean error of the system
double sum = 0.0;
for (int i = 0; i < n; i++) {
//the second part is because of world's cyclicity
double dx = mod((p[i].x - r.x + (world_size / 2.0)), world_size) - (world_size / 2.0);
double dy = mod((p[i].y - r.y + (world_size / 2.0)), world_size) - (world_size / 2.0);
double err = sqrt(pow(dx, 2) + pow(dy, 2));
sum += err;
}
return sum / n;
}
double max(double arr[], int n)
{
// Identify the max element in an array
double max = 0;
for (int i = 0; i < n; i++) {
if (arr[i] > max)
max = arr[i];
}
return max;
}
/*
void visualization(int n, Robot robot, int step, Robot p[], Robot pr[])
{
//Draw the robot, landmarks, particles and resampled particles on a graph
//Graph Format
plt::title("MCL, step " + to_string(step));
plt::xlim(0, 100);
plt::ylim(0, 100);
//Draw particles in green
for (int i = 0; i < n; i++) {
plt::plot({ p[i].x }, { p[i].y }, "go");
}
//Draw resampled particles in yellow
for (int i = 0; i < n; i++) {
plt::plot({ pr[i].x }, { pr[i].y }, "yo");
}
//Draw landmarks in red
for (int i = 0; i < sizeof(landmarks) / sizeof(landmarks[0]); i++) {
plt::plot({ landmarks[i][0] }, { landmarks[i][1] }, "ro");
}
//Draw robot position in blue
plt::plot({ robot.x }, { robot.y }, "bo");
//Save the image and close the plot
plt::save("./Images/Step" + to_string(step) + ".png");
plt::clf();
}
*/
//#### DON'T MODIFY ANYTHING ABOVE HERE! ENTER CODE BELOW ####
int main()
{
// TODO: Instantiate a robot object from the Robot class
// TODO: Set robot new position to x=30.0, y=50.0 and orientation=PI/2
// TODO: Turn clockwise by PI/2 and move by 15 meters
// TODO: Print the distance from the robot toward the eight landmarks
// TODO: Turn clockwise by PI/2 and move by 10 meters
// TODO: Print the distance from the robot toward the eight landmarks
return 0;
}
//#include "src/matplotlibcpp.h"//Graph Library
#include <iostream>
#include <string>
#include <math.h>
#include <vector>
#include <stdexcept> // throw errors
#include <random> //C++ 11 Random Numbers
//namespace plt = matplotlibcpp;
using namespace std;
// Landmarks
double landmarks[8][2] = { { 20.0, 20.0 }, { 20.0, 80.0 }, { 20.0, 50.0 },
{ 50.0, 20.0 }, { 50.0, 80.0 }, { 80.0, 80.0 },
{ 80.0, 20.0 }, { 80.0, 50.0 } };
// Map size in meters
double world_size = 100.0;
// Random Generators
random_device rd;
mt19937 gen(rd());
// Global Functions
double mod(double first_term, double second_term);
double gen_real_random();
class Robot {
public:
Robot()
{
// Constructor
x = gen_real_random() * world_size; // robot's x coordinate
y = gen_real_random() * world_size; // robot's y coordinate
orient = gen_real_random() * 2.0 * M_PI; // robot's orientation
forward_noise = 0.0; //noise of the forward movement
turn_noise = 0.0; //noise of the turn
sense_noise = 0.0; //noise of the sensing
}
void set(double new_x, double new_y, double new_orient)
{
// Set robot new position and orientation
if (new_x < 0 || new_x >= world_size)
throw std::invalid_argument("X coordinate out of bound");
if (new_y < 0 || new_y >= world_size)
throw std::invalid_argument("Y coordinate out of bound");
if (new_orient < 0 || new_orient >= 2 * M_PI)
throw std::invalid_argument("Orientation must be in [0..2pi]");
x = new_x;
y = new_y;
orient = new_orient;
}
void set_noise(double new_forward_noise, double new_turn_noise, double new_sense_noise)
{
// Simulate noise, often useful in particle filters
forward_noise = new_forward_noise;
turn_noise = new_turn_noise;
sense_noise = new_sense_noise;
}
vector<double> sense()
{
// Measure the distances from the robot toward the landmarks
vector<double> z(sizeof(landmarks) / sizeof(landmarks[0]));
double dist;
for (int i = 0; i < sizeof(landmarks) / sizeof(landmarks[0]); i++) {
dist = sqrt(pow((x - landmarks[i][0]), 2) + pow((y - landmarks[i][1]), 2));
dist += gen_gauss_random(0.0, sense_noise);
z[i] = dist;
}
return z;
}
Robot move(double turn, double forward)
{
if (forward < 0)
throw std::invalid_argument("Robot cannot move backward");
// turn, and add randomness to the turning command
orient = orient + turn + gen_gauss_random(0.0, turn_noise);
orient = mod(orient, 2 * M_PI);
// move, and add randomness to the motion command
double dist = forward + gen_gauss_random(0.0, forward_noise);
x = x + (cos(orient) * dist);
y = y + (sin(orient) * dist);
// cyclic truncate
x = mod(x, world_size);
y = mod(y, world_size);
// set particle
Robot res;
res.set(x, y, orient);
res.set_noise(forward_noise, turn_noise, sense_noise);
return res;
}
string show_pose()
{
// Returns the robot current position and orientation in a string format
return "[x=" + to_string(x) + " y=" + to_string(y) + " orient=" + to_string(orient) + "]";
}
string read_sensors()
{
// Returns all the distances from the robot toward the landmarks
vector<double> z = sense();
string readings = "[";
for (int i = 0; i < z.size(); i++) {
readings += to_string(z[i]) + " ";
}
readings[readings.size() - 1] = ']';
return readings;
}
double measurement_prob(vector<double> measurement)
{
// Calculates how likely a measurement should be
double prob = 1.0;
double dist;
for (int i = 0; i < sizeof(landmarks) / sizeof(landmarks[0]); i++) {
dist = sqrt(pow((x - landmarks[i][0]), 2) + pow((y - landmarks[i][1]), 2));
prob *= gaussian(dist, sense_noise, measurement[i]);
}
return prob;
}
double x, y, orient; //robot poses
double forward_noise, turn_noise, sense_noise; //robot noises
private:
double gen_gauss_random(double mean, double variance)
{
// Gaussian random
normal_distribution<double> gauss_dist(mean, variance);
return gauss_dist(gen);
}
double gaussian(double mu, double sigma, double x)
{
// Probability of x for 1-dim Gaussian with mean mu and var. sigma
return exp(-(pow((mu - x), 2)) / (pow(sigma, 2)) / 2.0) / sqrt(2.0 * M_PI * (pow(sigma, 2)));
}
};
// Functions
double gen_real_random()
{
// Generate real random between 0 and 1
uniform_real_distribution<double> real_dist(0.0, 1.0); //Real
return real_dist(gen);
}
double mod(double first_term, double second_term)
{
// Compute the modulus
return first_term - (second_term)*floor(first_term / (second_term));
}
double evaluation(Robot r, Robot p[], int n)
{
//Calculate the mean error of the system
double sum = 0.0;
for (int i = 0; i < n; i++) {
//the second part is because of world's cyclicity
double dx = mod((p[i].x - r.x + (world_size / 2.0)), world_size) - (world_size / 2.0);
double dy = mod((p[i].y - r.y + (world_size / 2.0)), world_size) - (world_size / 2.0);
double err = sqrt(pow(dx, 2) + pow(dy, 2));
sum += err;
}
return sum / n;
}
double max(double arr[], int n)
{
// Identify the max element in an array
double max = 0;
for (int i = 0; i < n; i++) {
if (arr[i] > max)
max = arr[i];
}
return max;
}
/*
void visualization(int n, Robot robot, int step, Robot p[], Robot pr[])
{
//Draw the robot, landmarks, particles and resampled particles on a graph
//Graph Format
plt::title("MCL, step " + to_string(step));
plt::xlim(0, 100);
plt::ylim(0, 100);
//Draw particles in green
for (int i = 0; i < n; i++) {
plt::plot({ p[i].x }, { p[i].y }, "go");
}
//Draw resampled particles in yellow
for (int i = 0; i < n; i++) {
plt::plot({ pr[i].x }, { pr[i].y }, "yo");
}
//Draw landmarks in red
for (int i = 0; i < sizeof(landmarks) / sizeof(landmarks[0]); i++) {
plt::plot({ landmarks[i][0] }, { landmarks[i][1] }, "ro");
}
//Draw robot position in blue
plt::plot({ robot.x }, { robot.y }, "bo");
//Save the image and close the plot
plt::save("./Images/Step" + to_string(step) + ".png");
plt::clf();
}
*/
//#### DON'T MODIFY ANYTHING ABOVE HERE! ENTER CODE BELOW ####
int main()
{
// Instantiate a robot object from the Robot class
Robot myrobot;
// Set robot new position to x=30.0, y=50.0 and orientation=PI/2.0
myrobot.set(30.0, 50.0, M_PI / 2.0);
// Turn clockwise by PI/2.0 and move by 15.0 meters
myrobot.move(-M_PI / 2.0, 15.0);
// Print the distance from the robot toward the eight landmarks
cout << myrobot.read_sensors() << endl;
// Turn clockwise by PI/2.0 and move by 10.0 meters
myrobot.move(-M_PI / 2.0, 10.0);
// Print the distance from the robot toward the eight landmarks
cout << myrobot.read_sensors() << endl;
return 0;
}